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11 Multiple Random Variables

One is often interested not only in individual random variables, but
also in relationships between two or more random variables. Fur-
thermore, one often wishes to make inferences about one random
variable on the basis of observations of other random variables.

Example 11.1. If the experiment is the testing of a new medicine,
the researcher might be interested in cholesterol level, blood pres-
sure, and the glucose level of a test person.

11.1 A Pair of Discrete Random Variables

In this section, we consider two discrete random variables, say X
and Y , simultaneously.

11.2. The analysis are different from Section 9.2 in two main
aspects. First, there may be no deterministic relationship (such as
Y = g(X)) between the two random variables. Second, we want
to look at both random variables as a whole, not just X alone or
Y alone.

Example 11.3. Communication engineers may be interested in
the input X and output Y of a communication channel.
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11.4. Recall that, in probability, “,” means “and”. For example,

P [X = x, Y = y] = P [X = x and Y = y]

and

P [3 ≤ X < 4, Y < 1] = P [3 ≤ X < 4 and Y < 1]

= P [X ∈ [3, 4) and Y ∈ (−∞, 1)] .

In general, the event

[“Some condition(s) on X”,“Some condition(s) on Y ”]

is the same as the intersection of two events:

[“Some condition(s) on X”] ∩ [“Some condition(s) on Y ”]

which simply means both statements happen.
More technically,

[X ∈ B, Y ∈ C] = [X ∈ B and Y ∈ C] = [X ∈ B] ∩ [Y ∈ C]

and
P [X ∈ B, Y ∈ C] = P [X ∈ B and Y ∈ C]

= P ([X ∈ B] ∩ [Y ∈ C]) .

Remark: Linking back to the original sample space, this short-
hand actually says

[X ∈ B, Y ∈ C] = [X ∈ B and Y ∈ C]

= {ω ∈ Ω : X(ω) ∈ B and Y (ω) ∈ C}
= {ω ∈ Ω : X(ω) ∈ B } ∩ {ω ∈ Ω : Y (ω) ∈ C}
= [X ∈ B] ∩ [Y ∈ C] .
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11.5. The concept of conditional probability can be straightfor-
wardly applied to discrete random variables. For example,

P [“Some condition(s) on X” | “Some condition(s) on Y ”] (28)

is the conditional probability P (A|B) where

A = [“Some condition(s) on X”] and

B = [“Some condition(s) on Y ”].

Recall that P (A|B) = P (A ∩B)/P (B). Therefore,

P [X = x|Y = y] =
P [X = x and Y = y]

P [Y = y]
,

and

P [3 ≤ X < 4|Y < 1] =
P [3 ≤ X < 4 and Y < 1]

P [Y < 1]

More generally, (28) is

=
P ([“Some condition(s) on X”] ∩ [“Some condition(s) on Y ”])

P ([“Some condition(s) on Y ”])

=
P ([“Some condition(s) on X”,“Some condition(s) on Y ”])

P ([“Some condition(s) on Y ”])

=
P [“Some condition(s) on X”,“Some condition(s) on Y ”]

P [“Some condition(s) on Y ”]

More technically,

P [X ∈ B|Y ∈ C] = P ([X ∈ B] |[Y ∈ C]) =
P ([X ∈ B] ∩ [Y ∈ C])

P ([Y ∈ C])

=
P [X ∈ B, Y ∈ C]

P [Y ∈ C]
.
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Figure 39: Joints events and conditional probabilities for discrete random vari-
ables: (a) an example, (b) the general case, (c) an important special case. Case
(c) is used to defined the joint pmf and conditional pmf.
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Definition 11.6. Joint pmf : If X and Y are two discrete ran-
dom variables (defined on a same sample space with probability
measure P ), the function pX,Y (x, y) defined by

pX,Y (x, y) = P [X = x, Y = y]

is called the joint probability mass function of X and Y .

(a) We can visualize the joint pmf via stem plot. See Figure 40.

(b) To evaluate the probability for a statement that involves both
X and Y random variables:

We first find all pairs (x, y) that satisfy the condition(s) in
the statement, and then add up all the corresponding values
from the joint pmf .

More technically, we can then evaluate P [(X, Y ) ∈ R] by

P [(X, Y ) ∈ R] =
∑

(x,y):(x,y)∈R
pX,Y (x, y).

Example 11.7 (F2011). Consider random variables X and Y

whose joint pmf is given by

pX,Y (x, y) =

{
c (x+ y) , x ∈ {1, 3} and y ∈ {2, 4} ,
0, otherwise.

(a) Check that c = 1/20.

(b) Find P
[
X2 + Y 2 = 13

]
.

(c) P
[
X2 + Y 2 < 20

]
In most situation, it is much more convenient to focus on the

“important” part of the joint pmf. To do this, we usually present
the joint pmf (and the conditional pmf) in their matrix forms:
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Definition 11.8. When both X and Y take finitely many val-
ues (both have finite supports), say SX = {x1, . . . , xm} and SY =
{y1, . . . , yn}, respectively, we can arrange the probabilities pX,Y (xi, yj)
in an m× n matrix

pX,Y (x1, y1) pX,Y (x1, y2) . . . pX,Y (x1, yn)
pX,Y (x2, y1) pX,Y (x2, y2) . . . pX,Y (x2, yn)

...
... . . . ...

pX,Y (xm, y1) pX,Y (xm, y2) . . . pX,Y (xm, yn)

 . (29)

• We shall call this matrix the joint pmf matrix.

• The sum of all the entries in the matrix is one.

2.3 Multiple random variables 75

Example 2.13. In the preceding example, what is the probability that the first cache

miss occurs after the third memory access?

Solution. We need to find

P(T > 3) =
∞

∑
k=4

P(T = k).

However, since P(T = k) = 0 for k ≤ 0, a finite series is obtained by writing

P(T > 3) = 1−P(T ≤ 3)

= 1−
3

∑
k=1

P(T = k)

= 1− (1− p)[1+ p+ p2].

Joint probability mass functions

The joint probability mass function of X and Y is defined by

pXY (xi,y j) := P(X = xi,Y = y j). (2.7)

An example for integer-valued random variables is sketched in Figure 2.8.
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Figure 2.8. Sketch of bivariate probability mass function pXY (i, j).

It turns out that we can extract the marginal probability mass functions pX (xi) and

pY (y j) from the joint pmf pXY (xi,y j) using the formulas

pX (xi) = ∑
j

pXY (xi,y j) (2.8)

Figure 40: Example of the plot of a joint pmf. [9, Fig. 2.8]

• pX,Y (x, y) = 0 if51 x /∈ SX or y /∈ SY . In other words, we
don’t have to consider the x and y outside the supports of X
and Y , respectively.

51To see this, note that pX,Y (x, y) cannot exceed pX(x) because P (A ∩ B) ≤ P (A). Now,
suppose at x = a, we have pX(a) = 0. Then pX,Y (a, y) must also = 0 for any y because it
cannot exceed pX(a) = 0. Similarly, suppose at y = a, we have pY (a) = 0. Then pX,Y (x, a) =
0 for any x.
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11.9. From the joint pmf, we can find pX(x) and pY (y) by

pX(x) =
∑
y

pX,Y (x, y) (30)

pY (y) =
∑
x

pX,Y (x, y) (31)

In this setting, pX(x) and pY (y) are call the marginal pmfs (to
distinguish them from the joint one).

(a) Suppose we have the joint pmf matrix in (29). Then, the sum
of the entries in the ith row is52 pX(xi), and
the sum of the entries in the jth column is pY (yj):

pX(xi) =
n∑
j=1

pX,Y (xi, yj) and pY (yj) =
m∑
i=1

pX,Y (xi, yj)

(b) In MATLAB, suppose we save the joint pmf matrix as P XY, then
the marginal pmf (row) vectors p X and p Y can be found by

p_X = (sum(P_XY,2))’

p_Y = (sum(P_XY,1))

Example 11.10. Consider the following joint pmf matrix

52To see this, we consider A = [X = xi] and a collection defined by Bj = [Y = yj ]
and B0 = [Y /∈ SY ]. Note that the collection B0, B1, . . . , Bn partitions Ω. So, P (A) =∑n
j=0 P (A ∩Bj). Of course, because the support of Y is SY , we have P (A∩B0) = 0. Hence,

the sum can start at j = 1 instead of j = 0.

190



Definition 11.11. The conditional pmf of X given Y is defined
as

pX|Y (x|y) = P [X = x|Y = y]

which gives

pX,Y (x, y) = pX|Y (x|y)pY (y) = pY |X(y|x)pX(x). (32)

11.12. Equation (32) is quite important in practice. In most
cases, systems are naturally defined/given/studied in terms of their
conditional probabilities, say pY |X(y|x). Therefore, it is important
the we know how to construct the joint pmf from the conditional
pmf.

Example 11.13. Consider a binary symmetric channel defined in
Example 11.3. Suppose the inputX to the channel is Bernoulli(0.3).
At the output Y of this channel, the crossover (bit-flipped) prob-
ability is 0.1. Find the joint pmf pX,Y (x, y) of X and Y .
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Exercise 11.14 (F2011). Continue from Example 11.7. Random
variables X and Y have the following joint pmf

pX,Y (x, y) =

{
c (x+ y) , x ∈ {1, 3} and y ∈ {2, 4} ,
0, otherwise.

(a) Find pX(x).

(b) Find EX.

(c) Find pY |X(y|1). Note that your answer should be of the form

pY |X(y|1) =


?, y = 2,
?, y = 4,
0, otherwise.

(d) Find pY |X(y|3).

Definition 11.15. The joint cdf of X and Y is defined by

FX,Y (x, y) = P [X ≤ x, Y ≤ y] .

Definition 11.16. Two random variables X and Y are said to be
identically distributed if, for every B, P [X ∈ B] = P [Y ∈ B].

In words, for any probability statement about X (and only X),
if we replace X by Y , we get the same probability.

Example 11.17. Roll a dice twice. Let X be the result from the
first roll. Let Y be the result from the second roll.

• X and Y are not the same. (Most of the time, they will be
different. By chance, they occasionally take the same value.)

•
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Example 11.18. Let X ∼ Bernoulli(1/2). Let Y = X and
Z = 1 − X. Then, all of these random variables are identically
distributed.

11.19. The following statements are equivalent:

(a) Random variables X and Y are identically distributed .

(b) For every B, P [X ∈ B] = P [Y ∈ B]

(c) pX(c) = pY (c) for all c

(d) FX(c) = FY (c) for all c

Definition 11.20. Two random variables X and Y are said to be
independent if the events [X ∈ B] and [Y ∈ C] are independent
for all sets B and C.

11.21. The following statements are equivalent:

(a) Random variables X and Y are independent .

(b) [X ∈ B] |= [Y ∈ C] for all B,C.

(c) P [X ∈ B, Y ∈ C] = P [X ∈ B]× P [Y ∈ C] for all B,C.

(d) pX,Y (x, y) = pX(x)× pY (y) for all x, y.

(e) FX,Y (x, y) = FX(x)× FY (y) for all x, y.

Definition 11.22. Two random variables X and Y are said to be
independent and identically distributed (i.i.d.) if X and
Y are both independent and identically distributed.

11.23. Being identically distributed does not imply independence.
Similarly, being independent, does not imply being identically dis-
tributed.

193



Example 11.24. Roll a dice. Let X be the result. Set Y = X.
(Note that this is different from Example 11.17. There, X and Y
are i.i.d.)

Example 11.25. Suppose the pmf of a random variable X is given
by

pX (x) =


1/4, x = 3,
α, x = 4,
0, otherwise.

Let Y be another random variable. Assume that X and Y are
i.i.d.

Find

(a) α,

(b) the pmf of Y , and

(c) the joint pmf of X and Y .
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Example 11.26. Consider a pair of random variables X and Y
whose joint pmf is given by

pX,Y (x, y) =


1/15, x = 3, y = 1,
2/15, x = 4, y = 1,
4/15, x = 3, y = 3,
β, x = 4, y = 3,
0, otherwise.

(a) Are X and Y identically distributed?

(b) Are X and Y independent?
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11.2 Extending the Definitions to Multiple RVs

Definition 11.27. Joint pmf:

pX1,X2,...,Xn
(x1, x2, . . . , xn) = P [X1 = x1, X2 = x2, . . . , Xn = xn] .

Joint cdf:

FX1,X2,...,Xn
(x1, x2, . . . , xn) = P [X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn] .

11.28. Marginal pmf:

pX(x) =
∑
y

∑
z

pX,Y,Z(x, y, z)

Example 11.29. Consider three random variables X, Y, and Z

whose joint pmf is given by

pX,Y,Z (x, y, z) =


1/7, (x, y, z) ∈ {(0, 1, 0) , (1, 1, 1)} ,
2/7, (x, y, z) = (0, 0, 1) ,
3/7, (x, y, z) = (0, 1, 1) ,
0, otherwise.

Then,

pX (0) ≡ P [X = 0] =

pX (1) ≡ P [X = 1] =

Therefore,

pX (x) =


, x = 0,
, x = 1,

0, otherwise.

Definition 11.30. Identically distributed random variables:
The following statements are equivalent.

(a) Random variables X1, X2, . . . are identically distributed

(b) For every B, P [Xj ∈ B] does not depend on j.

(c) pXi
(c) = pXj

(c) for all c, i, j.

(d) FXi
(c) = FXj

(c) for all c, i, j.
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Definition 11.31. Independence among finite number of ran-
dom variables: The following statements are equivalent.

(a) X1, X2, . . . , Xn are independent

(b) [X1 ∈ B1], [X2 ∈ B2], . . . , [Xn ∈ Bn] are independent, for all
B1, B2, . . . , Bn.

(c) P [Xi ∈ Bi,∀i] =
∏n

i=1 P [Xi ∈ Bi], for all B1, B2, . . . , Bn.

(d) pX1,X2,...,Xn
(x1, x2, . . . , xn) =

∏n
i=1 pXi

(xi) for all x1, x2, . . . , xn.

(e) FX1,X2,...,Xn
(x1, x2, . . . , xn) =

∏n
i=1 FXi

(xi) for all x1, x2, . . . , xn.

Example 11.32. Toss a coin n times. For the ith toss, let

Xi =

{
1, if H happens on the ith toss,
0, if T happens on the ith toss.

We then have a collection of i.i.d. random variablesX1, X2, X3, . . . , Xn.

11.33. Fact: For i.i.d. Xi ∼ Bernoulli(p), Y = X1 +X2 + · · ·+Xn

is B(n, p).
To see this, consider n (independent) Bernoulli trials (as in

Example 11.32). Let

Xi =

{
1, if success happens on the ith trial,
0, if failure happens on the ith trial.

Then, Y is simply counting the number of successes in the n tri-
als. From Definition 8.33 of Binomial RV, we conclude that Y is
binomial.

Example 11.34. Roll a dice n times. Let Ni be the result of the
ith roll. We then have another collection of i.i.d. random variables
N1, N2, N3, . . . , Nn.

Example 11.35. Let X1 be the result of tossing a biased coin.
Set X2 = X3 = · · · = Xn = X1.
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11.36. If X1, X2, . . . , Xn are independent, then so is any subcol-
lection of them.

Definition 11.37. A pairwise independent collection of ran-
dom variables is a collection of random variables any two of which
are independent.

(a) Any collection of (mutually) independent random variables is
pairwise independent

(b) Some pairwise independent collections are not independent.
See Example (11.38).

Example 11.38. Let suppose X, Y , and Z have the following
joint probability distribution: pX,Y,Z (x, y, z) = 1

4 for (x, y, z) ∈
{(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}. This, for example, can be con-
structed by starting with independent X and Y that are Bernoulli-
1
2 . Then set Z = X ⊕ Y = X + Y mod 2.

(a) X, Y, Z are pairwise independent.

(b) X, Y, Z are not independent.

11.3 Expectation of Function of Discrete Random Vari-
ables

11.39. Recall that the expected value of “any” function g of a
discrete random variable X can be calculated from

E [g(X)] =
∑
x

g(x)pX(x).

Similarly53, the expected value of “any” function g of two discrete
random variables X and Y can be calculated from

E [g(X, Y )] =
∑
x

∑
y

g(x, y)pX,Y (x, y).

53Again, these are called the law/rule of the lazy statistician (LOTUS) [22, Thm 3.6
p 48],[9, p. 149] because it is so much easier to use the above formula than to first find the
pmf of g(X) or g(X,Y ). It is also called substitution rule [21, p 271].
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Discrete
P [X ∈ B]

∑
x∈B

pX(x)

P [(X, Y ) ∈ R]
∑

(x,y):(x,y)∈R
pX,Y (x, y)

Joint to Marginal: pX(x) =
∑
y

pX,Y (x, y)

(Law of Total Prob.) pY (y) =
∑
x

pX,Y (x, y)

P [X > Y ]
∑
x

∑
y: y<x

pX,Y (x, y)

=
∑
y

∑
x:x>y

pX,Y (x, y)

P [X = Y ]
∑
x

pX,Y (x, x)

X |= Y pX,Y (x, y) = pX(x)pY (y)

Conditional pX|Y (x|y) =
pX,Y (x,y)

pY (y)

E [g(X, Y )]
∑
x

∑
y

g(x, y)pX,Y (x, y)

Table 8: Joint pmf: A Summary

11.40. E [·] is a linear operator: E [aX + bY ] = aEX + bEY .

(a) Homogeneous: E [cX] = cEX

(b) Additive: E [X + Y ] = EX + EY

(c) Extension: E [
∑n

i=1 cigi(Xi)] =
∑n

i=1 ciE [gi(Xi)].

Example 11.41. Recall from 11.33 that when i.i.d. Xi ∼ Bernoulli(p),
Y = X1 + X2 + · · · + Xn is B(n, p). Also, from Example 9.4, we
have EXi = p. Hence,

EY = E

[
n∑
i=1

Xi

]
=

n∑
i=1

E [Xi] =
n∑
i=1

p = np.

Therefore, the expectation of a binomial random variable with
parameters n and p is np.
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Example 11.42. A binary communication link has bit-error prob-
ability p. What is the expected number of bit errors in a trans-
mission of n bits?

Theorem 11.43 (Expectation and Independence). Two random
variables X and Y are independent if and only if

E [h(X)g(Y )] = E [h(X)]E [g(Y )]

for “all” functions h and g.

• In other words, X and Y are independent if and only if for
every pair of functions h and g, the expectation of the product
h(X)g(Y ) is equal to the product of the individual expecta-
tions.

• One special case is that

X |= Y implies E [XY ] = EX × EY. (33)

However, independence means more than this property. In
other words, having E [XY ] = (EX)(EY ) does not necessarily
imply X |= Y . See Example 11.54.

11.44. Let’s combined what we have just learned about indepen-
dence into the definition/equivalent statements that we already
have in 11.21.

The following statements are equivalent:

(a) Random variables X and Y are independent .

(b) [X ∈ B] |= [Y ∈ C] for all B,C.

(c) P [X ∈ B, Y ∈ C] = P [X ∈ B]× P [Y ∈ C] for all B,C.

(d) pX,Y (x, y) = pX(x)× pY (y) for all x, y.

(e) FX,Y (x, y) = FX(x)× FY (y) for all x, y.

(f)
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Exercise 11.45 (F2011). Suppose X and Y are i.i.d. with EX =
EY = 1 and VarX = VarY = 2. Find Var[XY ].

11.46. To quantify the amount of dependence between two
random variables, we may calculate their mutual information.
This quantity is crucial in the study of digital communications
and information theory. However, in introductory probability class
(and introductory communication class), it is traditionally omit-
ted.

11.4 Linear Dependence

Definition 11.47. Given two random variables X and Y , we may
calculate the following quantities:

(a) Correlation: E [XY ].

(b) Covariance: Cov [X, Y ] = E [(X − EX)(Y − EY )].

(c) Correlation coefficient: ρX,Y = Cov[X,Y ]
σXσY

Exercise 11.48 (F2011). Continue from Exercise 11.7.

(a) Find E [XY ].

(b) Check that Cov [X, Y ] = − 1
25 .

11.49. Cov [X, Y ] = E [(X − EX)(Y − EY )] = E [XY ]−EXEY

• Note that VarX = Cov [X,X].

11.50. Var [X + Y ] = VarX + VarY + 2Cov [X, Y ]
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Definition 11.51. X and Y are said to be uncorrelated if and
only if Cov [X, Y ] = 0.

11.52. The following statements are equivalent:

(a) X and Y are uncorrelated.

(b) Cov [X, Y ] = 0.

(c) E [XY ] = EXEY .

(d)

11.53. Independence implies uncorrelatedness; that is if X |= Y ,
then Cov [X, Y ] = 0.

The converse is not true. Uncorrelatedness does not imply in-
dependence. See Example 11.54.

Example 11.54. Let X be uniform on {±1,±2} and Y = |X|.

11.55. The variance of the sum of uncorrelated (or independent)
random variables is the sum of their variances.
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Exercise 11.56. Suppose two fair dice are tossed. Denote by the
random variable V1 the number appearing on the first dice and by
the random variable V2 the number appearing on the second dice.
Let X = V1 + V2 and Y = V1 − V2.

(a) Show that X and Y are not independent.

(b) Show that E [XY ] = EXEY .

11.57. Cov [aX + b, cY + d] = acCov [X, Y ]

Cov [aX + b, cY + d] = E [((aX + b)− E [aX + b]) ((cY + d)− E [cY + d])]

= E [((aX + b)− (aEX + b)) ((cY + d)− (cEY + d))]

= E [(aX − aEX) (cY − cEY )]

= acE [(X − EX) (Y − EY )]

= acCov [X,Y ] .

Definition 11.58. Correlation coefficient :

ρX,Y =
Cov [X, Y ]

σXσY

= E
[(

X − EX
σX

)(
Y − EY
σY

)]
=

E [XY ]− EXEY
σXσY

.

• ρX,Y is dimensionless

• ρX,X = 1

• ρX,Y = 0 if and only if X and Y are uncorrelated.

• Cauchy-Schwartz Inequality 54:

|ρX,Y | ≤ 1.

In other words, ρXY ∈ [−1, 1].
54Cauchy-Schwartz inequality shows up in many areas of Mathematics. A general form of

this inequality can be stated in any inner product space:

| 〈a, b〉 |2 ≤ 〈a, a〉 〈b, b〉 .

Here, the inner product is defined by 〈X,Y 〉 = E [XY ]. The Cauchy-Schwartz inequality then
gives

|E [XY ] |2 ≤ E
[
X2
]
E
[
Y 2
]
.
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11.59. Linear Dependence and Cauchy-Schwartz Inequality

(a) If Y = aX + b, then ρX,Y = sign(a) =

{
1, a > 0
−1, a < 0.

• To be rigorous, we should also require that σX > 0 and
a 6= 0.

(b) When σY , σX > 0, equality occurs in the Cauchy-Schwartz
inequality if and only if the following conditions holds

≡ ∃a 6= 0 such that (X − EX) = a(Y − EY )

≡ ∃a 6= 0 and b ∈ R such that X = aY + b

≡ ∃c 6= 0 and d ∈ R such that Y = cX + d

≡ |ρXY | = 1

In which case, |a| = σX
σY

and ρXY = a
|a| = sgn a. Hence, ρXY

is used to quantify linear dependence between X and Y .
The closer |ρXY | to 1, the higher degree of linear dependence
between X and Y .

Example 11.60. [21, Section 5.2.3] Consider an important fact
that investment experience supports: spreading investments over
a variety of funds (diversification) diminishes risk. To illustrate,
imagine that the random variable X is the return on every invested
dollar in a local fund, and random variable Y is the return on every
invested dollar in a foreign fund. Assume that random variables X
and Y are i.i.d. with expected value 0.15 and standard deviation
0.12.

If you invest all of your money, say c, in either the local or the
foreign fund, your return R would be cX or cY .

• The expected return is ER = cEX = cEY = 0.15c.

• The standard deviation is cσX = cσY = 0.12c

Now imagine that your money is equally distributed over the
two funds. Then, the return R is 1

2cX+ 1
2cY . The expected return
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is ER = 1
2cEX + 1

2cEY = 0.15c. Hence, the expected return
remains at 15%. However,

VarR = Var
[c

2
(X + Y )

]
=
c2

4
VarX +

c2

4
VarY =

c2

2
× 0.122.

So, the standard deviation is 0.12√
2
c ≈ 0.0849c.

In comparison with the distributions of X and Y , the pmf of
1
2(X + Y ) is concentrated more around the expected value. The
centralization of the distribution as random variables are averaged
together is a manifestation of the central limit theorem.

11.61. [21, Section 5.2.3] Example 11.60 is based on the assump-
tion that return rates X and Y are independent from each other.
In the world of investment, however, risks are more commonly
reduced by combining negatively correlated funds (two funds are
negatively correlated when one tends to go up as the other falls).

This becomes clear when one considers the following hypothet-
ical situation. Suppose that two stock market outcomes ω1 and ω2

are possible, and that each outcome will occur with a probability of
1
2 Assume that domestic and foreign fund returns X and Y are de-
termined by X(ω1) = Y (ω2) = 0.25 and X(ω2) = Y (ω1) = −0.10.
Each of the two funds then has an expected return of 7.5%, with
equal probability for actual returns of 25% and -10%. The random
variable Z = 1

2(X + Y ) satisfies Z(ω1) = Z(ω2) = 0.075. In other
words, Z is equal to 0.075 with certainty. This means that an in-
vestment that is equally divided between the domestic and foreign
funds has a guaranteed return of 7.5%.
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